Submitting Author and Affiliation
Rodrigo Romero
Novartis Institutes for BioMedical Research, Cambridge, Massachusetts

Lead Author
Rami Rahal, PhD

Academic Background: Date of Entry: January 2012
Degrees Expected: None
Expected Year of Graduation/Program Completion: May 2013
Major or Field of Study: Cancer Biology
Academic Level: College
Post Baccalaureate School Name: Suffolk University
Post Baccalaureate Graduation Year: 2012

Institution where the research was conducted
Novartis Institutes for BioMedical Research, Cambridge, Massachusetts

Co-author(s)
Mareike Frick, PhD, Joshua Korn, PhD, David Ruddy, Adnan Derti, Daniel Rakiec, Tara Naylor, Audrey Kauffmann, Estelle Pfister, Christine Fritsch, Steve Kovats, Sunkyu Kim, PhD, Kerstin Dietze, Bernd Dörken, Alexandar Tzankov, Michael Hummel, John Monahan, PhD, Michael Morrissey, PhD, Georg Lenz, PhD, Frank Stegmeier, PhD

Co-authors’ Affiliations
Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
Department of Hematology, Oncology and Tumor Immunology, Molecular Cancer Research Center, Charité -Universitätsmedizin, Berlin, Germany
Novartis Institutes for BioMedical Research, Basel, Switzerland
Institute of Pathology, University Hospital Basel, Basel, Switzerland
Department of Pathology, Charité - Universitätsmedizin, Berlin, Germany

Title: “Pharmacological and Genomic Profiling Identifies Deregulation of Classical and Alternative NFκB Signaling in Mantle Cell Lymphoma”

Category: Microbiology, Immunology, Genetics, or Molecular Biology (Cancer Biology)

Funding Source(s): Novartis Institutes for BioMedical Research, Cambridge, Massachusetts

Research Sponsor(s): Novartis Institutes for BioMedical Research, Cambridge, Massachusetts

Statement of the Problem/Background:
Mantle cell lymphoma (MCL) is an aggressive malignancy characterized by an extremely poor prognosis, underscoring the need for novel therapeutic strategies.

Research Question/Hypothesis:
Large-scale pharmacological profiling identified a subset of mantle cell lymphoma (MCL) lines sensitive to the PKC inhibitor Sotrastaurin (STN). Subsequent analysis of a larger set of MCL lines identified STN-sensitive MCL lines and STN-insensitive MCL lines.

Research Design/Methods Used in the Investigation:
High-throughput RNA sequencing identified recurrent mutations in negative regulators of the alternative NFκB pathway in MCL cell lines and patient samples.

Results/Summary of the Investigation:
STN-sensitive MCL lines exhibited chronic activation of the CARD11-BCL10-MALT1 (CBM) complex and dependency on classical NFκB signaling. In contrast, STN-insensitive cell lines displayed activation of the alternative NFκB pathway. Cells containing mutations in negative regulators of the alternative NFκB pathway were sensitive to inhibition of NIK-NFκB signaling, identifying NIK as a new therapeutic target for MCL.

Interpretation/Conclusion of the Investigation:
These findings reveal a pattern of mutually exclusive activation of the CBM-NFκB or alternative NIK-NFκB pathways in MCL and provide critical insights into patient stratification strategies for NFκB-pathway targeted agents.